閉断面リブ溶接の溶け込み確保に関する研究

STUDY ON SECURING PENETRATION IN THE WELDING OF TROUGH RIB

畑	稔朗リ	稻葉 章 3	本告 英樹 "
Toshir	o Hata	Akira Inaba	Hideki Motoori

1. まえがき

近年,デッキプレートと閉断面リブ(以下,Uリブと 呼ぶ)の溶接ルート部からの疲労亀裂発生が報告されて いる.その原因として,輪荷重がUリブの直上に繰り返 し載荷される際のデッキプレートの変形によることが既 往の研究で判明している.これら疲労亀裂の進展に対し, 溶け込み量を確保し応力集中を緩和することが有効であ るとされ,Uリブもしくはコーナープレートとデッキプ レートの溶接部は図-1に示すように所定ののど厚と溶 け込み量を確保することが,道路橋示方書改訂により要 求品質の一部として規定されることとなった.

図-1 溶込みのイメージ(道路橋示方書 17.9.2より抜粋)

当社和歌山工場においても,道路橋示方書の改訂前の 横大路第3工区(旧阪神高速道路公団・平成12年発注) や第二東名高速道路北崎高架橋(大型Uリブ採用:旧日 本道路公団・平成12年発注)より,必要溶け込み量を確 保するための溶接施工法の確立に着手した.着手から現 在に至るまでの経過と取り組み状況を以下に述べる.

2. 経過

溶接装置として,当初は自社開発の8電極溶接装置 (写真-1)を使用していたが,平成16年より生産効率 の向上を目的に,パネルライン化された8電極溶接装置

(写真-2)を導入し現在に至っている.また,溶接材料 については当初,CO2半自動溶接機と同材料を使用して いたが,平成16年の溶接装置更新による電気容量アッ プから,深溶け込みに有効な溶接材料を採用することが 可能となり,新たな溶接条件の設定を行い現在に至って いる.

写真-1 開所当時のパネル溶接状況

写真−2 現在のパネル溶接状況

汎用 U リブ(320×240×6)における施工法 3.1 開先加工法

当初の施工法は,既存の溶接機を搭載した自社開発の 溶接装置ならびに既存の溶接材料を使用したこともあっ て,溶け込み確保のための溶接施工法としてUリブ本体 に開先加工(図-2)を施し,適用を開始した.

本施工法では,開先精度の確保が溶け込み量確保のた めの重要なポイントとなった.そこで,実施工時におけ

 ¹⁾ 生産第一グループ 和歌山工場 生産技術チーム
2) 生産第一グループ 和歌山工場 技術管理チーム

³⁾ 生産第一グループ 和歌山工場 品質管理チーム

るハンドベベラーによる開先加工の際,加工毎に開先角 度およびルートフェィスの確認を行い精度確保に努めた.

図-2 開先形状 (6mm)

3.2 省開先1パス施工法

8 電極溶接装置の更新により,電源容量のアップおよ び深溶け込み用溶接材料の採用が可能となった。これに ともない当初の開先加工法よりも生産効率のよい,省開 先1パス施工法を適用すべく溶接施工試験による確認を 行った.以下に溶接施工試験内容,試験結果および施工 法としての妥当性について述べる.

3.2.1 溶接施工試験体

溶接施工試験体の形状およびマクロ試験片の採取位置 を図-3 に示す.

図-3 試験体形状(汎用 U リブ)

上図の試験体において,施工試験を行った.なおUリ ブは開先なしの1パス施工とし,一般溶接部および組立 て溶接部からもマクロ試験片を採取し溶け込み量の確認 をすることとした.以下に溶接条件と溶接状況および試 験結果を示す.

3.2.2 溶接条件

溶接条件を図-4 および表-1 に示す.

図-4 ねらい位置

表-1 溶接条件(開先無なし、1パス)

電	流	395A	ワイヤー径	φ1.4
電	圧	40V	トーチ角度(A)	45°
速	度	45cm/min	突き出し長(B)	25mm
溶接	材料	MX-Z200	ねらい位置(C)	Omm

3.2.3 マクロ試験結果

マクロ試験結果を以下に示す.

写真-3 マクロ試験片

表-2 マクロ試験結果

No. 部 位	脚	長	溶込み長	溶込み率	のど厚	
	비	а	b	(mm)	(%)	(mm)
M1	一般部	6.0	8.6	5.3	88.3	8.2
M2	一般部	6.0	8.6	5.5	91.7	8.3
M3	一般部	6.2	8.2	4.9	81.7	8.2
M4	一般部	6.0	8.7	5.3	88.3	8.3
M5	仮付部	6.1	8.4	4.9	81.7	8.1
M6	仮付部	6.5	8.2	5.1	85.0	8.2

3.3 施工法としての妥当性について

試験結果から、本溶接条件による施工試験体について は溶接外観も良好で、溶け込み深さは板厚の 75%以上、 のど厚は縦リブの板厚以上を確保できており、道路橋示 方書の要求品質を十分満足していると言える.

また,施工面では開先加工が不要で製作工数の大幅な 低減が可能であり,溶け込み量とのど厚の品質管理も, 溶接条件の管理だけでよく,生産効率のよい妥当な施工 法と言える.

4. 大型 U リブ(450×330×9)への適用

大型 U リブについては, 第二東名北崎高架橋(平成 12 年)で開先加工法による施工実績がある.しかしながら 前述した汎用Uリブと同様に, 8 電極溶接装置の更新に より溶接装置に適した溶接条件を確立する必要が生じた。 よって同時期に受注した, 第二東名御殿場ジャンクショ ン上部工(旧日本道路公団発注:大型 U リブ使用合理化 鋼床版)を対象物件とし,様々な溶接条件を設定した溶接 施工試験による検証の後,最適施工条件を決定し実施工 に適用した.

また,溶け込み量の検証として,実部材での非破壊検 査(UT 検査)による検証が可能かどうかを検討した。 すなわち近年研究が進んでいる表面 SH 斜角法とクリー ピング波法の2方法について探傷結果とマクロ試験によ る実測溶け込み量の対比により、適用の可否を検討した. 以下に溶接施工試験内容と試験結果および最適施工条件 選定時の考察について述べる.

4.1 施工試験体形状

試験体形状を図-5に示す.

4.2 開先形状

図-6 開先形状 (9mm)

開先形状は,図-6の通りとし異なる開先角度,開先深

さおよび溶接条件の組み合わせについて、1 パス及び 2 パスの施工を行った. なお大型 U リブについては、合理 化鋼床版設計施工指針(平成 12 年 日本道路公団)に準 拠し、全ての U リブ内側に 1C の面取り加工を施した.

4.3 施工試験条件

施工試験時の条件を表-3,表-4に示す.

表-3 1パス施工

(1)条件1(MX-Z200 φ1.4)

開先角度	42.5°	速度	40cm/min
開先深さ	6mm	トーチ角度(A)	45°
電 流	410A	突き出し長(B)	25mm
電 圧	40V	ねらい位置(C)	-3mm

(2)条件 2(MX-Z200 φ1.4)

開先角度	47.5°	速度	40cm/min
開先深さ	7mm	トーチ角度(A)	45°
電 流	410A	突き出し長(B)	25mm
電 圧	40V	ねらい位置(C)	-3mm

(3)条件 3(MX-Z200 φ1.4)

開先角度	48.0°	速度	40cm/min
開先深さ	7.5mm	トーチ角度(A)	45°
電 流	410A	突き出し長(B)	25mm
電 圧	43V	ねらい位置(C)	-3mm

表−4 2パス施工

(1)条件 4(MX-Z200 φ1.4)

開先角度	48.0°	速度①	60cm/min
開先深さ	7.5mm	速度②	50cm/min
電流①	400A	トーチ角度(A)	45°
電流②	400A	突き出し長(B)	25mm
電圧①	40V	ねらい位置(C)	-2mm
電圧②	40V	ねらい位置(C)	+3mm

(2)条件 5(FCM-1F φ1.4)

開先角度	48.0°	速度①	56cm/min
開先深さ	7.5mm	速度②	29cm/min
電流①	320A	トーチ角度(A)	45°
電流②	320A	突き出し長(B)	25mm
電圧①	32V	ねらい位置(C)	-3mm
電圧②	32V	ねらい位置(C)	+2mm

(3)条件 6 (FCM-1F φ1.4)

開先角度	48.0°	速度①	50cm/min
開先深さ	7.5mm	速度②	32cm/min
電流①	320A	トーチ角度(A)	45°
電流②	320A	突き出し長(B)	25mm
電圧①	32V	ねらい位置(C)	-3mm
電圧②	32V	ねらい位置(C)	+Omm

4.4 施工試験結果

各溶接条件下での試験結果を表-5 に示す。非破壊検 査結果についてはマクロ試験片との溶け込み深さの 対比を,溶接外観については溶接脚長の測定結果を記 載する.

表-5 各試験結果の比較

(1)条件 1(MX-Z200 φ1.4)

No	溶	け込み量	(mm)	脚長(mm)	
NO.	マクロ	SH波	クリーヒ゜ンク゛	上	下
1	7.2	7.4	7.0	8.5	5.0
2	8.2	8.0	7.0	8.3	4.2
3	6.7	7.1	7.5	8.2	5.5
4	7.2	7.9	7.5	8.4	4.4
5	7.5	7.0	7.0	8.0	5.0
6	7.6	7.4	7.3	8.2	4.2

(2)条件 2(MX-Z200 φ1.4)

No.	溶	計込み量	(mm)	脚長(mm)	
	マクロ	SH波	クリーヒ゜ンク゛	上	下
1	9.0	8.0	7.0	7.6	4.0
2	9.0	7.9	7.0	6.6	4.0
3	9.0	7.7	7.5	8.2	3.8
4	9.0	8.4	7.5	7.4	3.7
5	8.0	7.9	7.0	8.2	5.0
6	9.0	8.3	7.3	7.6	4.2

(3)条件 3(MX-Z200 φ1.4)

No.	溶	け込み量	(mm)	脚長(mm)	
	マクロ	SH波	クリーヒ゜ンク゛	上	Т
1	9.0	8.4	7.6	7.9	2.6
2	9.0	8.4	8.0	8.1	2.3
3	9.0	8.6	8.0	7.9	3.6
4	9.0	8.5	8.1	8.2	3.8
5	9.0	8.3	9.0	9.0	3.2
6	9.0	8.4	9.0	7.8	3.2

(4)条件 4(MX-Z200 *φ*1.4)

No.	溶け込み量(mm)			脚長(mm)	
	マクロ	SH波	クリーヒ゜ンク゛	上	下
1	9.0	9.0	9.0	9.1	7.0
2	8.3	9.0	8.5	9.0	7.0
3	8.7	9.0	9.0	9.0	6.8
4	8.2	8.1	9.0	9.7	6.6
5	9.0	9.0	9.0	9.6	6.8
6	8.2	9.0	9.6	9.8	6.4

(5)条件 5(FCM-1F φ1.4)

No.	溶け込み量(mm)			脚長(mm)	
	マクロ	SH波	クリーヒ゜ンク゛	上	下
1	8.6	8.2	8.0	9.5	6.0
2	8.6	8.6	8.0	10.0	5.5
3	8.5	8.6	8.4	9.6	5.7
4	8.5	7.8	8.5	9.5	5.5
5	9.0	9.0	8.4	9.6	5.0
6	9.0	8.1	9.0	9.5	5.5

(6)条件 6(FCM-1F φ1.4)

No.	溶け込み量(mm)			脚長(mm)	
	マクロ	SH波	クリーヒ゜ンク゛	上	ч
1	9.0	9.0	9.2	8.3	6.8
2	9.0	9.0	9.5	8.6	6.4
3	9.0	9.0	9.0	8.7	6.8
4	9.0	8.9	8.0	8.9	6.6
5	9.0	9.0	9.0	9.0	6.3
6	7.8	9.0	8.4	9.2	6.8

4.5 施工試験結果の考察

4.5.1 溶け込み量と脚長

1パス施工(条件1~3)の場合,溶け込み確保のため 溶接ワイヤーのねらい位置をUリブ内側(-3mm)とし た結果,下脚長が不足した.

2パス施工(条件4~6)では2層目をUリブ外側にお くことで脚長を確保できた.また溶け込み量の安定性に ついては, MX-Z200の方が優れている.

4.5.2 非破壊検査(UT 検査)による溶け込み量の検証

1 パス及び 2 パス施工とも SH 波およびクリーピング 波にて探傷し、マクロ試験片による実測溶け込み量との バラツキ比較を行った。SH 波による探傷結果の方がク リーピング波より、バラツキが少ない結果となった.ま た1パス施工と 2 パス施工では、2 パス施工の方がバラ ツキが少ない結果となった.

4.5.3 最適施工条件の選定

以上の結果から,溶け込み量の安定確保と溶接外観を 重視し,溶接材料として MX-Z200 を用いた 2 パス施工 を選定した.また非破壊検査(UT 検査)による実部材 での溶け込み量の検証としては 2 方法ともに探傷精度に バラツキがあるが,比較的バラツキの少ない SH 波を自 主管理方法として採用した.

5. あとがき

本施工試験を通し,汎用 U リブならびに大型 U リブの 溶接施工法については確立できたが,非破壊検査(UT 検査)による溶け込み量の検証については探傷精度を高 める必要があり,さらに研鑽を深めたい.

最後に本施工試験にあたり,ご協力頂いた製造チーム 技術管理チーム,品質管理チームの各位に深謝申し上げ ます.

参考文献

1) 日本道路協会:鋼道路橋の疲労設計指針,2002.4.

2) 日本道路公団:合理化鋼床版設計施工指針,2000.5.