建築構造用高降伏点 490N/mm²鋼材の4面ボックス 柱スキンプレート適用に関する事前検討

白井 嘉行*1, 小林 光博*2

近年、超高層鋼構造建築で最も多く使用されている引張強度 490 N/mm² 鋼に対して、 TMC プロセスの適用により溶接性は従来鋼(490 N/mm²)と同等ながら、溶接部の靭性 が優れ、設計強度が従来鋼の 325 N/mm²から 400N/mm²と高い数値の建築構造用高降伏点 490N/mm²鋼材が開発された。しかし、現状では溶接施工面での実施例が少なく、使用す べき溶接材料および溶接条件は確立されていない。

そこで、本研究では建築構造用高降伏点 490N/mm² 鋼材をスキンプレートに使用した 4面ボックス柱をモデル化した実物大の試験体を製作し、溶接部の機械的性質の調査を 行った。その結果を報告する。

ダイアフラム

100

キーワード:建築構造用高降伏点 490N/mm²鋼材,4面ボックス柱,溶接施工

1. 序

建築空間の有効活用を目的とする大スパン化、高 層化等に対し、柱部材の支える荷重の増加に対応す る有効な鋼材が開発された。

本研究では、建築構造用高降伏点 490N/mm²鋼材の 4面ボックス柱スキンプレートへの適用にあたり、 溶接材料および溶接施工の検討を実物大の試験体を 製作し溶接部の調査を行った。

2. 実験計画

(1) 試験体

試験体材質はスキンプレートに建築構造用高降伏 点 490N/mm² 鋼材の PL-60 を、内ダイアフラムに TMCP325B 鋼の PL-45 を仕口フランジに SN490B の PL-40 を使用した。使用鋼材の機械的性質を表1に 化学成分を表2に示す。使用した鋼材のメーカーは 新日本製鐵㈱である。試験体ボックス主管は BOX-900×900×60×60、長さ3000mm とし、幅500mm の仕口を各面に取付けた。試験体形状を図1に、開 先詳細を図2に示す。ボックス角継手溶接はタンデ ムサブマージアーク溶接を用い、1パスで溶接施工 を行った。内ダイアフラムの溶接は非消耗ノズル式 エレクトロスラグ溶接を用いた。4箇所の仕口の溶 接のうち2箇所は現場溶接を想定し横向姿勢で、そ の他2箇所は現場溶接を想定し下向姿勢で CO₂ ガス シールドアーク半自動溶接にて行った。

使用鋼材の機械的性質(ミルシート) 表 1 VD TS EL YR vEo 鋼板 材質 (%) (%) (J) (N/mm^2) (N/mm^2) 建築構造用高降伏点 スキンプレー 445 567 31 78 296 490N/mm²鋼材

400

543

30 74 299

33 70 260

仕ロフランジ SN490B 361 517
YP:降伏点、TS:引張強さ、EL:伸び、YR:降伏比 vEo:0℃吸収エネルギー

TMCP325B

3000 900 1200 900 100 300 スキンプレート 建築構造用高隆伏点 285 300 490N/mm2鋼材 t=60 ダイアフラム TMCP325B t=45 SS400 t=19 906 成形板 ダイアフラム SS400 t=12 TMCP325B t=45 仕口フランジ BOX-900 × 900 × 60 × 60 SN490B t=40 (幅500) 図1 試験体形状 60 33*

^{※1} 鉄構事業部 鉄構富津工場 技術課係長 修士(工学)

^{※2} 鉄構事業部 鉄構富津工場 技術課長

									-									
鎁板	材質	С	Si	Min	Р	S	Cu	Ni	Cr	Мо	No	۷	В	Ν	Ti	Ceq	P _{CM}	${\rm f}_{\rm HAZ}$
スキンプレート	建築構造用高降伏点 490N/mm ² 鋼材	0.13	0.27	1.39	0.009	0.002	0.02	0.02	0.02	0.01	0.02	0	0.0001	0.0033	0.015	0.38	0.21	0.35
ダイアフラム	TMCP325B	0.13	0.28	1.35	0.01	0.002	0.02	0.02	0.02	0.01	0.01	0	0	-	-	0.37	0.21	-
仕ロフランジ	SN490B	0.14	0.23	1.49	0.006	0.002	-	0.02	0.02	0	-	0.06	-	-	-	0.41	-	-

表2 使用鋼材の化学成分(%)

Ceq: C+Mn/6+Si/24+Cr/5+V/14*Ni/40+Mo/4

 P_{CM} : C+Mn/20+Si/30+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B

f_{HAZ}: C+Mn/8+6 (P+S) +12N-4T i

表3 使用溶接材料

溶接部位	溶接方法	溶接材料規格	溶接材料銘柄	メーカー
ボックス角継手	サブマージアーク溶接	JIS Z 3183 S623-H1	ワイヤ:先行 US-49(6.4Φ) 後行 US-49(6.4Φ) フラックス:PFI-53ES	神戸製鋼
内ダイアフラム	非消耗ノズル式 エレクトロスラグ溶接	JIS Z 3353 YES51/FS-FG3	ワイヤ : YM-55S(1.6 Φ) フラックス : YF-15I	日鐵住金
仕ロフランジ	CO2ガスシールドアーク 半自動溶接	JIS Z 3312 YGW18	KC-55G(1.4Φ)	製造元∶神戸製鋼 販売元∶JFE溶接棒

表 4 施工時溶接記録

			~			1.		
	溶接部位	溶接方法		電流 (A)	電圧 (V)	溶接速度 (cm/min)	入熱 (kJ/cm)	最高パス間温度 (℃)
	ボックス角継手	サブマージアーク	先行極:2150 後行極:1650	先行極:40 後行極:50	18.0	562	-	
	内ダイアフラム	非消耗ノズル式エレクトロ	380	52	1.32~1.41	840~898	-	
	仕ロフランジ	CO2ガスシールドアーク	下向姿勢	350~360	40~42	22.6 ~ 53.5	16.1~37.2	283
		半自動溶接	横向姿勢	300~320	38~40	25.2 ~ 89.2	8.6~32.0	256

CO₂ ガスシールドアーク半自動溶接の溶接条件の 管理は入熱 40kJ/cm 以下、パス間温度 350℃以下で 行なった。使用溶接材料を表3に、施工時の溶接記 録を表4に示す。

超音波探傷検査による溶接部の内部欠陥は全ての 部位で検出されず、また内ダイアフラム溶接部のエ レクトロスラグ溶接の溶込み幅は日本建築学会規準 を満たす十分な値であった。

(2) 機械試験

溶接金属引張試験片は平行部の径 12.5mm の JIS Z 3111 A1 号試験片を用い、内ダイアフラム溶接部お よび角継手溶接部より 2 箇所ずつ採取した。十字継手 引張試験はスキンプレートに平行および直行方向よ り採取した。十字継手引張試験片形状を図 3 に示す。

シャルピー衝撃試験は JIS Z 2202 V ノッチ試験片 を用い、試験温度 0℃で行った。

ビッカース硬さ試験は溶接部の表面 5mm、板厚中 央および裏側 5mm の位置に試験力 98N で試験を行っ た。打点ピッチは母材および溶接金属部は 1mm、熱 影響部は 0.5mm で行った。

3. 実験結果

(1) マクロ試験結果

マクロ試験片写真を図4に示す。溶接金属内部の 割れ、ブローホール等の欠陥は見られなかった。ま た、溶込み不良、母材と溶接金属との融合不良は見 られず、建築構造用高降伏点 490N/mm²鋼材に対する 十分な溶込みが確認できた。

(2) 引張試験結果

引張試験結果一覧を表5に示す。溶接金属引張試 験片採取位置を図5に示す。試験結果は全ての試験 片で母材の引張強さの規格下限値490N/mm²を上回っ た。各試験片は同一部位から2本ずつ採取したが、 各々の実験結果の値に差異はみられなかった。十字 引張試験体の破断位置は全て母材であり、スキンプ レート平行試験体はスキンプレート、スキンプレー ト直交試験体は仕ロフランジが破断位置であった。 同一断面では溶接部の強度は母材より大きいことが 確認できた。

		会如位	场取合器		YP	TS	EL	YR	RA		
	司场失入	135-미미고			(N/mm^2)	(N/mm^2)	(%)	(%)	(%)		
		角継手 溶接部	山山山	1本目	525	687	24	76	65		
			Т, С.	2本目	524	682	24	77	65		
			主屈如	1本目	526	680	23	77	65		
	溶着金属		2019日	2本目	525	675	24	78	66		
	引張試験	内ダ ア 溶接部	山山如	1本目	423	560	25	76	72		
			何大中	2本目	416	558	27	75	74		
			フキンプI (月)	1本目	394	543	28	73	72		
			スキンノ レード [1]	2本目	395	549	29	72	71		
			仕ロフランジ	1本目	-	521	-	-	I		
		スキンプレート 直交	下向溶接	2本目	-	520	-	-	I		
			仕ロフランジ	1本目	-	525	-	-	I		
十 弓	十字継手		横向溶接	2本目	-	524	-	-	I		
	引張試験	スキンプレート 平行	仕ロフランジ	1本目	-	569	I	-	-		
			下向溶接	2本目	-	569	I	-	-		
			仕ロフランジ	1本目	-	570	_	-	-		
						横向溶接	2本目	-	569	-	-

表5 引張試験結果一覧

(1)角継手溶接

(2) 内ダイアフラム溶接 + 仕口下向溶接

(3) 内ダイアフラム溶接 + 仕口横向溶接

図4 マクロ試験片写真

(3) シャルピー衝撃試験結果

シャルピー衝撃試験結果一覧を表6に示す。0℃吸 収エネルギーは全ての試験体において目標の27Jを 上回った。表中の0℃吸収エネルギーおよび延性破面 率は同一箇所から採取した3試験片の平均値である。

内ダイアフラム溶接部及び角継手溶接部の 0℃吸 収エネルギー-試験片採取位置関係を図6および図 7に示す。0℃吸収エネルギーはエレクトロスラグ溶 接部中央から HAZ 部に向かって直線的に増加する傾 向がみられた。一方、角継手溶接部ではサブマージ アーク溶接中央部と HAZ 部に対し、BOND の値が若干 低めの傾向があった。

試験対象部位	試験片	采取位置	0℃吸収エネルギー (J)	延性破面率 (%)		
		表層側	44	28		
	DEPO	中央	53	40		
		ルート側	48	42		
		表層側	74	55		
角継手	BOND	中央	54	37		
		ルート側	65	27		
		表層側	65	28		
	HAZ	中央	40	47		
		ルート側	108	42		
		中央	34	47		
内ダイマフラ /	DEPU	スキンPL側	61	62		
MY1////A	BC	DND	80	22		
	Н	AZ	111	35		
		DEPO	156	93		
	横向溶接	BOND	212	93		
チョット・ペン		HAZ	229	93		
		DEPO	79	78		
	下向溶接	BOND	224	97		
		HAZ	193	82		

表6 シャルピー衝撃試験結果一覧

0℃吸収エネルギー-試験片採取位置 (角継手溶接部)

	12/ 27/		、欧阳不 見	
試験対象部位	測定位置	測定数	最大値 (Hv)	最小値 (Hv)
	表層側5mm	168	212	135
- 1775222000000000000000000000000000000000	板厚中央	156	229	134
	ルート側5mm	145	219	137
	表層側5mm	161	250	134
- 1775222250000000000000000000000000000000	板厚中央	156	239	136
	ルート側5mm	144	235	136
	表層側5mm	150	220	138
角継手溶接部	板厚中央	164	218	139
	ルート側5mm	85	221	141

表7 ビッカース硬さ試験結果一覧

0°C吸収エネルギー(J)

(4) ビッカース硬さ試験結果

ビッカース硬さ試験結果を表7に、図8に測定位 置の一例を、図9に試験結果を示す。全ての部位に おいて最高硬さが350Hvを超えるものはみられなか った。また、母材硬さの値が約180Hvに対し、測定 された最高硬さは約250Hv、最低硬さは約135Hvの 値であることより極端な硬化部および軟化部は確認 できなかった。

4. まとめ

建築構造用高降伏点490N/mm²鋼材をスキンプレートに使用した実物大の4面ボックス柱試験体を製作し溶接施工に関し検討を行った。

その結果、溶接部の機械的性質は本実験の条件に おいて、目標値を全て上回ることが確認できた。