横波振動法を用いた合成床版の非破壊検査法に関する試験

STUDY ON NON-DESTRUCTIVE INSPECTION METHOD FOR COMPOSITE SLAB WITH SHEAR WAVE RESONATING

中本啓介¹⁾ 橘 肇²⁾ Keisuke Nakamoto Hajime Tachibana

鋼コンクリート合成床版は,高い耐久力および疲労耐久性などの特徴を有しており,安全性や施 工性に優れていることから実橋への適用が増えている.現在までに損傷事例は報告されてないが, 合成床版はコンクリート床版下面が底鋼板により覆われていることよりコンクリートの損傷や劣 化を直接目視確認できない等の課題が挙げられている.本論文では,非破壊検査技術である横波振 動法に着目した検査法について検討を行った.模擬損傷を設けた実物大試験体による確認試験を実 施した結果,本検査方法によりコンクリートの健全部と損傷部(空隙,滞水状態)の検出が可能で あることを確認した.

キーワード:鋼コンクリート合成床版,横波超音波波振動法,FFT 解析

1. まえがき

鋼コンクリート合成床版(以下,合成床版)は、コ ンクリート床版と同様に,床版表面のひび割れから水 が侵入し、荷重の繰り返し載荷を受けることで、コン クリートのせん断耐荷力が急激に損なわれることが既 往の研究により報告 ¹⁾されている. 侵入した水が底鋼 板とコンクリート間に滞水し、鋼部材の腐食による減 厚が懸念される. 簡易な点検法として床版下面側から の打音による充填確認は実施されているが、合理的に 底鋼板上の滞水状態を検知する有効な検査技術は,現 状では確立されていない状況である. そこで, 著者ら は、非破壊検査技術であるトンネルや管路等のコンク リート構造物の劣化診断に用いられている横波振動法 ²⁾に着目し、合成床版の非破壊検査法の開発を行った。 本論文では、実物大試験体を対象に実施した横波振動 法を用いた合成床版の空隙状態および滞水状態を検知 するための確認試験について示す.

2. 横波振動法の概要

2.1 横波振動法による測定

本開発に用いた横波振動法は,鋼板表面から送信セ ンサーを用いて低周波成分を含む広帯域な音波を伝播 させ,鋼板部材に横波による振動(エネルギー)を入 力し,この鋼板部材の振動状態を受信センサーで捉え ることで鋼板裏面の空隙,滞水の有無を検出する手法 である.

合成床版に横波振動法を用いた場合の検査概要を図

写真-1 測定機器

-1 に、測定装置を写真-1 に示す.合成床版の場合,底 鋼板とコンクリートが付着した状態(以下,健全部と する)では、コンクリートにより鋼板の振動は拘束さ

図-2 センサー間隔 100mmにおける探傷可能範囲

図-3 試験体概要図

れる.しかし、底鋼板とコンクリートの境界面に空隙 や水が存在すれば拘束されず、対象部は固有振動数に 応じた伝搬波により共振現象を生じ振動数、波形形状 の変化が顕著となることに着目した検査手法である.

2.2 測定範囲

本試験では適用するセンサー間隔は 100mm とした. この場合の測定可能範囲は、図-2に示す送受信の各セ

表−1 模擬損傷の種類			
損傷番号	サイズ(mm)	深さ(mm)	備考
1	100x100	0.14	
2	100x100	0.50	
3	100x100	2.00	
4	140x140	0.14	水孔あり
5	140x140	0.50	水孔あり
6	140x140	2.00	水孔あり
\bigcirc	140x140	0.14	
8	140x140	0.50	
9	140x140	2.00	

写真-2 模擬損傷の再現状況

ンサーの受け持つ測定半径 200mm の共有部分より 300mm×300mmの範囲とした.

横波振動法の特徴として,一般的な超音波法と比較 すると,面情報とした探傷結果が得られることが挙げ られる. すなわち, ピンポイントでの測定値が要求さ れず,測定対象部が広範囲になる場合に有効な探傷手 法である.また,超音波センサーと底鋼板間に接触媒 体を必要とせず, 点接触で測定することができるため 作業効率が良い点が挙げられる.

3. 試験内容

本試験では、横波振動の入力により発生する周波数 は,一般的に測定対象部材の材質や板厚によって変化 することに着目し,人工的な模擬損傷を設けた試験体 を用いて評価基準について検討することを目的として いる.まず,健全部を測定し,基準となる波形を確認 できるように測定機器の感度を調整する. これにより 基準となる健全部の受信波形を確認し、損傷が存在す る箇所の受信波形での判断が可能となると考える.

試験体は、図-3に示す実橋と同じ底鋼板厚を有す合 成床版形状を設定した.大きさは 1600mm×2000mm と し、型枠補強として鋼板リブを 400mm 間隔に配置し た. 底鋼板厚は 6mm, コンクリート厚さは 160mm と

(a) 測定波形

(a) 測定波形

して孔明き鋼板ジベルを用いて合成床版を再現した. 損傷の大きさによる波形の差異,および滞水の有無を 確認するため,深さとサイズをパラメータとした模擬 損傷を9箇所に配置した.配置要領を図-4に,模擬損 傷の種類を表-1に示す. 模擬損傷は,コンクリート 打込み前に,底鋼板に空隙厚さとサイズに相当するフ ィルムとモルタルブロックを底鋼板上に設置すること により再現した. 模擬損傷の再現状況を**写真-2**に示す. 空隙の深さは 0.14mm, 0.5mm および 2.0mm の 3 種類 とし,滞水状態は底鋼板に設けた孔より水を注入する ことで再現した. 測定は,損傷部とその周辺に着目し 材齢,測定者毎の波形差を確認するため複数回実施し データを収集した.

(b) FFT解析結果

(b)FFT解析結果

4. 試験結果

健全部と損傷部の測定結果より代表的な結果を抽出 して示す.損傷部は損傷深さ 0.14mm における空隙部 および滞水部とした.各状態の測定波形,ならびに測 定範囲の卓越振動数を分析するために実施した FFT 解 析結果を図-5~7 に示す.なお,FFT 解析のパラメー タは,サンプリング刻み 1.0µsec,データ数 4096 個お よび周波数間隔 0.244kHz とした.

まず,測定波形に着目する.健全部ではコンクリートにより鋼板の振動が拘束されるため出力電圧の振幅 が最大でも±80mV程度と小さく,測定開始から3,000µs 程度で±10mVに減衰していくことが確認できる.空隙 部と滞水部では探傷部の鋼板が拘束されないことが関 係し振幅は最大で500mV程度と大きく,出力電圧の振 幅は,非対称となる波形を有していることが確認できる.また,滞水の有無により出力電圧の減衰傾向は異 なることが確認できる.

つぎに,FFT 解析により,卓越周波数の分析を行う. 健全部において 0-4kHz ならび 17kHz 前後に卓越振動 数が,存在していることが確認できる.これは横波振 動法の測定波形入出力時におけるセンサー固有の卓越 振動数であると考えられる.そこで,各損傷状態を確 認するための周波数帯は 4kHz-15kHz 帯に着目して おこなう.

健全部では,着目周波数帯においてパワースペクト ルはほぼ0であり,卓越振動数が存在していないこと がわかる.一方,空隙部では15kHz未満の振動数が広 範囲に出現し,そのパワースペクトル値の山と谷の差 が40以上となることが確認できる.滞水部のパワース ペクトルは着目周波数帯において,空隙部同様,広範 囲に出現しているが,空隙部と比べるとパワースペク トルの分布は平滑化され山と谷の差が20未満のとな る傾向にありパワースペクトル分布は異なることが確 認できる.

以上より,出力電圧の波形と FFT 解析による卓越周 波数の分析により損傷の種類を区別することが可能で あると考える.なお,損傷深さ,サイズを変えた場合 でも同様な測定波形の差,周波数特性について確認し ている.

5. まとめ

非破壊検査技術である横波振動法に着目し、合成床 版の非破壊検査について確認試験を行った.その結果、 測定波形より健全部と損傷部の判断が可能である.ま た、FFT 解析による損傷部の周波数分析より、滞水の 有無を検知が可能であることがわかった.

本論文では紹介していないが、底鋼板厚および損傷 深さをパラメータとした確認試験も実施しており、現 在測定データの蓄積を行っている.今後は、測定機器 の探傷感度の調整,各種損傷状態の測定データの蓄積 を継続的に行い損傷部の評価基準を確立していく.

おわりに

本稿で示した非破壊検査法は、(株)駒井ハルテック、 片山ストラテック(株)および三協エンジニアリング (株)の3社による共同開発である.執筆にあたり共 同開発会社の関係者各位には便宜を図って頂きました. 試験実施にあたっては長岡技術科学大学実務訓練生の 三浦謙介君には多大な作業を行ってもらいました.こ こに記して謝辞といたします.

参考文献

- 1) 例えば、(社) 日本橋梁建設協会:鋼・コンクリート合成 床版 維持管理の計画資料, 2007.3
- 茨田 匠,吉村 睦,河端 俊典,石黒 覚:横波超音波共振法による農業用水管路の探傷の有効性,農業土木学会論 文集,pp.123-128,2005.4